Sun Protection for Your Pets

Our pets are just as vulnerable to sunlight-induced skin disease as we are. Some pets worship the sun as much as their beach-going humans do. In people, addiction to tanning is associated with the production of endorphins produced as part of the skin’s immune response to light exposure. Similar sun-seeking behavior can happen in pets as well. Although hair protects many animals from sunlight, not all parts of the body are covered with sufficient hair to shield the underlying skin from solar damage.

The armpits, abdomen, skin in front of the ears, nose and muzzle are vulnerable in all pets; short-coated breeds and lighter pigmented individuals are particularly at risk. Even indoor-only pets can have problems with too much sun.  Although double-paned and newer glass windows can prevent most harmful effects of the sun, older glass windows do not block all types of potentially damaging solar radiation.

Too much sun can cause problems ranging from burns to cancer. Dogs and cats can get precancerous lesions called actinic keratoses, which can then progress to skin cancers such as squamous cell or basal cell carcinoma. Some dogs can develop tumors of the blood vessels called hemangiomas.

The best protection strategy in humans and animals is avoidance of the sun, particularly when radiation levels are the highest, between 10 AM and 4 PM.  Early morning and evening are the safest times for long walks or outdoor play.  A penned enclosure with shade cloth can be effective in treeless yards.

Some companies make “sunwear” for dogs, designed for solar protection. Human clothing can be adapted for our pets as well, although few dogs or cats tolerate hats.

Sunscreen use in humans has increased along with awareness of the damaging effects of too much sun. However, sunscreen is typically not applied appropriately or at high enough frequency to be effective.  The use of sunscreens may impart a false sense of security, leading people to spend more time in the sun at the most dangerous times of the day.  Veterinary sunscreens are available; human zinc-free sunscreens designed for use in infants can be alternative.

Canine Unicompartmental Elbow Resurfacing (CUE)

Severe elbow arthritis

Severe elbow arthritis. The pink area is exposed bone where the cartilage has been worn away

About severe elbow arthritis in dogs

Osteoarthritis from coronoid disease and other forms of elbow dysplasia may result in complete loss of cartilage on the weight-bearing surfaces of the medial joint structures resulting in what veterinarians call Medial Compartment Disease (MCD). This is the “end stage” form of elbow dysplasia where the inside part of the joint collapses with eventual grinding of bone on bone. Interestingly and importantly, the larger lateral (outside) part of the elbow joint appears normal in the vast majority of patients.  Medial compartment disease can be diagnosed in dogs as young as 6 months of age or may become apparent in any age after that.

How can medial compartment disease be treated?

Options such as oral medications, joint injections, and physical therapy may be beneficial in some cases for at least a period of time and should be discussed with your veterinarian. When surgical treatment is deemed necessary, as is often the case, the Canine Unicompartmental Elbow (CUE) is a safe and effective option to consider. The CUE was developed by Dr. Schulz (Peak) and Dr. Cook (University of Missouri) with the Arthrex corporation. It was developed as a treatment for MCD for dogs in which arthroscopic treatment and the nonsurgical options are no longer successful. By focusing on the specific area of disease (the medial compartment), the CUE implant provides a less invasive, bone-sparing option for resurfacing the bone-on-bone medial compartment while preserving the dog’s own “good” cartilage in the lateral compartment. This medial resurfacing procedure reduces or eliminates the pain and lameness that was caused by the bone-on-bone grinding.

Cobalt chrome and titanium implant

This implant is made of cobalt chrome and titanium and is inserted in the upper bone (humerus) of the joint to restore the gliding surface

Is the CUE a major surgery?

The CUE procedure is an open surgery but only takes about one hour to perform. Unlike total elbow replacements it does not require major bone cutting and a large surgical approach. The recovery from CUE is much faster than from total elbow replacements and the outcome appears to be much better.

Polyethylene and titanium implant

This implant is made of polyethylene and titanium and is placed in the lower bone (ulna) of the elbow joint. It articulates with the other implant resulting in a low friction pain free articulation for the elbow.

What can I expect after CUE surgery?

You will be sent home with antibiotics and pain-relieving medications for your dog. A bandage will be placed on the limb, which you will need to keep clean and dry. The bandage will be changed after one week and maintained for at least two weeks after surgery. Sutures will be removed approximately two weeks after the procedure. Your dog must be restricted to rest in a kennel or crate, with controlled leash walking only, for eight weeks after surgery. Follow-up examination and assessment of healing will be performed 8-10 weeks after the procedure, at which time rehabilitation exercises will be initiated to allow a progressive return to full activity levels by six months after surgery. Full athletic function is not expected until three to six months after surgery, at which time a final assessment will be performed.

Our client information sheet on the CUE can be downloaded here:

  Canine Unicompartmental Elbow Resurfacing (CUE)

What Is The Spleen?

What is the spleen?

The spleen is a tongue shaped organ of the abdomen that acts as a reservoir for blood as well as filters the circulating blood.  It removes and recycles old red blood cells and attacks any blood borne pathogens like bacteria and parasites commonly associated with tick borne diseases via its large volume of lymphoid tissue (immune system).

Canine and feline spleens may distend and contract to help increase circulating blood volume and this can be influenced by anesthetic medications.  Spleens can be surgically removed without significant compromise to our pets’ long term health.

When does an enlarged spleen need to be further evaluated?

Patients may be presented to a veterinarian for a variety of non-specific signs of illness resulting from an enlarged spleen or splenic mass.  Vomiting, inappetence, weight loss, low energy, pale mucus membranes (gums), or simply enlargement of their abdomen can be symptoms that a pet exhibits when there is a problem with their spleen.  A veterinarian may incidentally find a mass when palpating the abdomen on yearly health exams.  Splenic masses can be caused by a variety of diseases ranging from infection (abscess) to a tumor (benign vs. malignant), which is more common.  Additionally, systemic diseases or malpositioning of the spleen may also increase its overall size. Diagnostic tools veterinarians have to differentiate these multitude of diseases are x-rays (radiographs), abdominal ultrasound, CT (computed topography), and sometimes MRI (magnetic resonance imaging).

1. Normal Spleen Radiograph

Radiographs give an excellent over-view of a patient’s abdomen and help to appreciate the overall size and shape of organs in comparison to the rest of the patients’ abdominal organs.  Abdominal ultrasound is superior at looking at the inside architecture of abdominal organs and can determine different characteristics of the enlarged spleen or splenic mass that help guide treatment recommendations and provide tentative prognoses.

2. Enlarged Spleen Radiograph

3. Normal Spleen Ultrasound

The abdominal ultrasound can determine the location of a mass and whether it is associated with the spleen.  Unfortunately, tumors of the spleen are reported to be a malignant cancer more often than not.  Because tumors of the spleen typically arise from the blood vessels (hemangiosarcoma), the spread or metastasis of the tumor has already occurred at time of diagnosis and or the tumors have ruptured and are actively bleeding into the patients’ abdominal cavity.  The liver is commonly affected with metastasis of splenic cancers, so evaluation with an abdominal ultrasound can help determine if this is apparent.  Additionally, bleeding into the abdomen from the spleen can be assessed and diagnosed via abdominal ultrasound.

4. Splenic Mass Ultrasound

What are common tumors of the spleen?

The most common splenic tumor is the malignant cancer, hemangiosarcoma.  This is a tumor of the blood vessels and as a result can easily rupture and cause life threatening bleeding.  Unfortunately, diagnosis of a hemangiosarcoma requires tissue analysis (histopathology), which is typically completed with surgical removal of the spleen, and stops the active bleeding.  There are less concerning tumors of the spleen that can also rupture (hemangioma, hematomas) that once removed surgically are curative and should not affect your pet’s long term survival.  Other tumors include different sarcomas, lymphoma, and mast cell tumors (more commonly in cats).  Non-tumor diseases like infection (abscess) and splenic torsion (strangulation of splenic blood vessels), are also causes of an enlarged spleen, necessitating surgery.

What does surgery entail for your pet if they have been diagnosed with a splenic tumor or general enlargement of the spleen?

Canine and feline patients will be assessed thoroughly by a veterinarian to ensure they are stable and safe to proceed with surgery.  This typically entails complete blood work, chest x-rays, and blood type check to ensure that if a blood transfusion is needed the hospital is prepared.  Your family member will be put under general anesthesia and will have their abdomen clipped of hair for sterility purposes.  Through a long incision, the entire abdomen and abdominal organs will be thoroughly evaluated for abnormal changes.  Samples of other organs will be safely obtained if deemed necessary.  The spleen will then be isolated and removed.  Often using special vessel sealing and incising devices, LigaSure, adopted from human surgeons, will be used to safely and quickly remove the spleen stopping any current bleeding and obtaining the necessary tissue for analysis (histopathology).

5. Multiple Splenic Tumors

How long does my pet need to recover from surgery?

Following their successful recovery from anesthesia, your pet will need to be in the hospital for a couple of days for close monitoring.  Blood transfusions can be common for patients that were bleeding from their masses before surgery.  Bleeding after surgery is unlikely, but possible, and this will be closely monitored.  Heart arrhythmias (irregular heart rhythm and activity) can be present that may need to be treated with medications.  As your pet improves, they will be transitioned to oral medications and prepared to discharge home for further recovery.  Typically patients need 2 weeks of strict exercise restriction and rest.  Monitoring their incision for signs of infection and supportive care with medications are the mainstay of their at home recovery.  After 2 weeks of a successful recovery, they are allowed to go back to normal activity.

If my pet is diagnosed with hemangiosarcoma, what is their prognosis?

Unfortunately, hemangiosarcoma is a very serious and debilitating cancer.  The average patient following a diagnosis of splenic hemangiosarcoma will only have a life expectancy of around 3 months.  Chemotherapy may extend survival with hemangiosarcoma and we advise meeting with one of our oncologists after a diagnosis of hemangiosarcoma to see if further treatment would be appropriate for you and your pet.  Chemotherapy is well tolerated in our canine and feline patients.  They receive intermittent injections or pills on an outpatient basis and only a small percentage (less than 15% will experience nausea, vomiting, or low white blood cells requiring antibiotics.  There are ongoing studies and trials occurring nationwide trying to find drugs that could improve survival following a diagnosis of hemangiosarcoma.

Shoulder Instability

What is shoulder instability?

Shoulder problems are one of the most common causes of front leg lameness in dogs.   Shoulder instability (SI) describes a wide range of soft tissue injuries to the ligaments, tendons and muscles of  the shoulder.  SI affects all sizes and breeds of dogs.  Many athletic (esp. agility) dogs are affected, but more sedentary pets are also affected.  At this time it is not clear if the condition is purely traumatic or a result of degeneration of the tissue.  Typical patients are middle aged, but SI can affect all ages.    SI most commonly affects a single leg, but a small percentage of pets have both shoulders affected.

How is SI diagnosed?

The starting point for diagnosis of SI is a thorough orthopedic and neurologic examination.  Once pain has been localized to the shoulder, radiographs (x-rays) are typically the next step.  It is important to note that radiographs typically do not diagnose shoulder instability, but are used to look for other causes of shoulder lameness (fractures, cancer, cartilage flaps or arthritis).  Once radiographs are taken, the next step is generally a sedated measurement of shoulder stability (shoulder abduction angle) (Figure 1).  Further diagnostic steps are dependent on this angle measurement.  Often, ultrasound is used to evaluate the soft tissues of the shoulder.

Fig. 1: MRI demonstrating normal biceps.

In some cases, MRI (figure 2) may also be required to completely evaluate the extra-articular structures and determine the best treatment options.  Cost may be rate limiting for these diagnostic tests.  In most cases, exploratory arthroscopy must be performed to definitely diagnose the problem.

How do you treat SI?

Medical management: A variety of treatment options exist for SI and depend on the type and degree of instability present.  For early cases, medical management may be the first step.  Patients are sedated and fluid sampled from the affected joint.  Long acting steroids (depomedrol 20-40mg) may be placed in the joint to decrease inflammation and pain.

Fig. 2: Hobbles by

Patients will often be placed in a special type of hobble to limit shoulder motion during the healing phase (figure 3).  Physical therapy is very important after the initial healing phase to regain shoulder strength.  Treatments such as laser, therapeutic ultrasound and shockwave are often used during this phase of treatment.

Platelet rich plasma (PRP) is a new therapy that involves spinning down the patient’s own blood and harvesting the platelet portion of the plasma.  This can be injected into the joint and may help stimulate the healing process.  Objective evaluation of these therapies is lacking. Water therapy (swimming and water treadmill) can be very valuable with both surgically and medically managed SI in dogs.

Fig. 3: Tightrope, minimally invasive shoulder reconstruction

Weight control is also very important.  Overweight patients should be placed on appropriate calorie or metabolic diets.  Medical management can result in good outcomes in about 2/3 of appropriately selected patients. Dogs with significant laxity (abduction angles >60 degrees) rarely resolve with medical management only.  Surgical management:  surgical management is the treatment of choice for more severe instability cases or in those that medical management has failed.  A variety of surgical stabilization procedures are available and depend on the exact cause of SI.  Minimally invasive surgical options are always considered.  Ligament replacement surgery is often the surgical treatment of choice for SI (figure 4).  Successful outcomes with surgery approach 90%.  Patients can return to full function, but it may take 6-12 months to completely regain muscle strength.  Complications with surgery are uncommon, but include infection, failure of the repair or persistent lameness.

Portosystemic Shunts

What is a portosystemic shunt?

A portosytemic shunt (PSS) is an abnormal blood vessel that carries blood intended to flow through the liver and diverts it away from the liver to the general circulation. The portal system is a special network of blood vessels that collect blood and metabolic byproducts from many of the abdominal organs and allows passage of that blood through the liver to remove some harmful substances and derive nutrition from others. When the portal system is bypassed by a shunt, the blood flows unfiltered back to the heart and is circulated to the body, including the brain.

Portosystemic shunt (arrow) as seen at surgery located in the region of the stomach and spleen.

Diverse bodily functions can be impaired. Affected animals can show symptoms including:

  • Decreased alertness and appropriate reaction to surroundings most often seen following a meal(varying in severity from a puppy that seems “quiet” or “tired” to seizure activity)
  • Decreased growth
  • Abnormal urination (urinary stones can form in animals with PSS)
  • Various gastrointestinal symptoms (vomiting, poor appetite)
  • Drooling (a common symptom in cats with PSS)

PSS is seen in dogs and cats, but the majority of cases seen and treated are in dogs. The abnormal vessel is most often congenital (present at birth), and the symptoms are usually seen fairly early in life.  PSS in its most common form tends to affect small and toy breeds, although some large breed dogs can also be affected.

How is a portosystemic shunt diagnosed?

Most patients are diagnosed due to a concern for one or more of the symptoms above, but some PSS are discovered because of abnormalities in routine blood testing (such as done during a puppy or annual exam). Once there is suspicion for PSS, a blood test called a bile acids test is often performed. This is a test of general liver function, but patients with PSS will have abnormally high bile acid levels. This finding will prompt an imaging test to diagnose the presence of the abnormal vessel as well as its appearance. PSS can take many forms, so it can be important to know the shunt configuration before deciding on the nature of treatment. There are other conditions which resemble PSS on diagnostics without the presence of an abnormal vessel.

The most common methods of diagnosis are ultrasound and computed tomography (CT). Ultrasound, in experienced hands, can detect most PSS and give information about the size and location of the aberrant vessel. There is a fair amount of variation in the connection points of the abnormal vessel from one patient to another, so a “roadmap” is key to pre-surgical planning. CT is a highly useful tool for PSS diagnosis and gives detailed visual anatomical information which can be reconstructed into a 3-D format. Whether ultrasound, CT or both are used, the entire abdomen is assessed to screen for other abnormalities, including bladder stones.

How do you treat portosystemic shunts?

Most PSS are single, fairly large vessels coursing outside of the liver tissue (extrahepatic). These will be discussed. Intrahepatic shunts are located within the liver tissue allowing the blood to bypass filtration and flow directly to the heart without passing through the portal system.

Sometimes multiple shunts can be seen. These are usually not congenital, but acquired later in life and are associated with underlying liver disease and are not amenable to surgical treatment.

Medical Management

Once a single extrahepatic portosystemic shunt is diagnosed medical management should be initiated.  This treatment will help control the symptoms previously described, but does not reroute the abnormal blood flow and surgery is ultimately recommended in most patients.  Medical management often consists of the use of medication to decrease the absorption of ammonia by the intestines, antibiotics, low protein diets, and anti-seizure medications.

Lactulose can decrease the amount of ammonia absorbed by the intestines during the breakdown of proteins. Ammonia contributes to the abnormal neurologic signs in dogs with PSS.

Survival times reported with medical management range from five months to more than seven years following diagnosis.  In animals with PSS, medical management is generally recommended for a minimum of two weeks prior to undergoing any form of anesthesia for diagnostic information or surgical treatment.Surgical Management

Gradual closure of PSS is considered the treatment of choice in most animals due to improved outcomes. Several different surgical techniques are available to cause gradual occlusion of the abnormal blood vessel, including the use of cellophane, ameroid constrictors, hydraulic occluders, and coil embolization.

For the majority of these techniques to be performed, the abdominal cavity must be opened along the midline to allow exposure of the liver.  The abnormal vessel is located and a device is applied around the vessel where the blood flow enters general circulation.  Cellophane bands and ameroid constrictors stimulate scar tissue formation when applied allowing gradual closure of the vessel, whereas a hydraulic occluder can be gradually inflated or deflated through injection of a port placed under the skin at the time of surgery.

Ameroid constrictor placed around PSS.

Alternatively, coil embolization is performed using large catheters which are inserted through the blood vessels of the neck.  Coils are inserted from within the blood vessel and gradually result in clotting and closure of the abnormal vessel.  This technique is most frequently used with intrahepatic shunts.

A radiograph demonstrating coil embolization with a stent in the caudal vena cava and coils at the location of the entering anomalous vessel.

If any bladder stones were noted on imaging prior to surgery, these can be removed during the same procedure through an incision into the bladder (cystotomy). Spay or neuter can also be performed.

What are the possible complications of surgery?

Following surgery your pet is monitored closely in the ICU.  Complications that can be noted following surgery include:

Hypoglycemia: Some animals will have low blood sugar in the immediate postoperative period.  If this occurs dextrose can be given in a diluted form with IV fluids.  This condition usually resolves when the pet is alert enough to eat solid foods.

Portal hypertension: Reported in 2 – 14% of patients. This complication occurs when the shunting vessel closes too quickly.  Because of the presence of the shunting vessel, the portal vein is often smaller than usual.  When blood is redirected to flow through the portal vein time is needed for this vessel to accommodate.  If too much blood is directed through the portal vein too quickly, the blood pressure in this vessel elevates rapidly causing back pressure into the intestines.  If left untreated portal hypertension ultimately results in death.  Symptoms of hypertension include abdominal pain, distension, and severe diarrhea.  If recognized immediate return to surgery to adjust the surgical site is recommended.

– Seizures or abnormal neurologic signs: Reported in 3 – 18% of dogs and 8 – 22% of cats.  Most commonly this is seen within the first three days following surgery.  The cause of this is unknown.  If observed treatment with IV fluids and benzodiazepines is initiated.  If neurologic abnormalities persist, general anesthesia for 12 -24 hours is attempted until cessation of seizure activity is noted; some animals may require 72 hours of anesthesia.  The prognosis for animals with postoperative seizures is often unfavorable, though recovery is possible.

Return of clinical signs: This can occur if a shunting vessel fails to close completely or if it closes too rapidly leading to the formation of additional shunting vessels.  Additional surgery may be recommended if either of these scenarios occur.

What is the prognosis for my pet after surgery?

Mortality rates in dogs following surgery for PSS is <10%, varying somewhat with the technique used to occlude the shunting vessel.  Mortality rates are higher in animals with postoperative neurologic dysfunction or evidence of portal hypertension.

Long-term, animals undergoing surgery for PSS have good to excellent outcomes in 80-90% of cases.

What kind of postoperative care will my pet need?

Following surgery, most pets are hospitalized for 48 – 72 hours to monitor for postsurgical complications and to administer pain medications.  Following discharge from the hospital, a specialized low protein diet is continued until blood work shows evidence of improved liver function.  Lactulose may also be continued to help reduce abnormal neurologic signs while the liver recovers.

Laryngeal Paralysis


Written by Kurt S. Schulz, DVM, DACVS

Laryngeal paralysis is a common upper respiratory disease of dogs. It most often affects large breed dogs such as Labrador retrievers and Golden retrievers but it can affect any dog of any breed or size. Normally when a dog inhales the larynx (voice box) opens to allow air into the trachea and lungs. The larynx closes between breaths to prevent food and water from going into the trachea and lungs. In laryngeal paralysis the muscle that opens the larynx stops functioning. This results in a very narrow passageway to get air into the lungs instead of the normal wide-open larynx. Dogs with laryngeal paralysis have difficulty inhaling and the harder they try the more difficult it becomes to inhale adequate air.

Fig.1 – Views of the larynx. The top view is of a normal larynx. The middle is a laryngeal opening in a dog with laryngeal paralysis. The bottom is the appearance of the larynx following a tie back procedure.

What are the signs of laryngeal paralysis?

Several signs may suggest that a dog has laryngeal paralysis:

  • Harsh breathing – laryngeal paralysis usually leads to a characteristic harsh breathing sound that gets louder with exercise. This noise is caused by air passing through the narrow space in the larynx.
  • Voice change – laryngeal paralysis will often cause a change in a dogs bark, making it sound more hoarse.
  • Coughing – Some dogs may have a cough with laryngeal paralysis that sounds like it comes from the throat.
  • Gagging – Many dogs with laryngeal paralysis may gag when they eat or drink.

How is laryngeal paralysis treated?

Laryngeal paralysis is best treated by surgery. There are several surgical options although one procedure, the “tie-back” is the most accepted and most commonly performed by Board Certified surgeons.

Tie back

In the tie back procedure the larynx is approached through the side of the neck. The failed muscle is then identified and replaced with a suture to permanently open the larynx on one side. This procedure produces the best airway with the least complications of any of the available surgeries.

Partial arytenoidectomy

In this procedure the portions of the larynx that obstruct the airway (the arytenoids) are removed by scissor or laser through the mouth. This procedure is not recommended because of the high risk of scar formation that can severely obstruct the airway.

Castellated laryngofissure

This procedure enlarges the airway through a complicated series of incisions and reconstructions from the underside of the neck. There have been no definitive advantages shown with this procedure and it is rarely performed.

Permanent tracheostomy

A permanent tracheostomy should only be performed when a tie back procedure will not correct the airway obstruction. Dogs with permanent tracheostomies cannot swim and may have other chronic airway complications.

For additional information about Laryngeal Paralysis: laryngeal paralysis

Case Study: Thoracic Limb Lameness in French Bulldog


Seth Mathus Ganz, DVM, DACVS

Stitch is a now 6 month old intact male French Bulldog that presented to the Veterinary
Specialty Hospital North County surgery service at 4 months of age for evaluation of left thoracic limb
lameness after jumping out of his owner’s arms. On exam, Stitch was BAR and hydrated. He exhibited a
grade 4/4 (non weight-bearing) left thoracic limb lameness with pain, swelling and crepitus in the left
elbow. Radiographs taken by the referring veterinarian demonstrated a mildly-displaced left lateral humeral condylar fracture. The treatment options were discussed with the owner. Fluoroscopic-guided closed reduction and internal fixation was elected.

Stitch was placed under general anesthesia and the left thoracic limb prepared for sterile surgery in the radiology suite. A point to point bone holding reduction forceps was used to reduce the humeral condylar fracture under fluoroscopic guidance. A selfcompressing pin was driven lateromedially through the distal humeral epiphysis. A smooth Kirschner wire was then driven from the lateral epicondyle up the lateral epicondylar crest to exit the caudomedial aspect of the diaphysis to provide rotational
stability. All of the implants were placed under fluoroscopic guidance. The implants were placed percutaneously without incisions and Stitch made an uneventful recovery from anesthesia and was discharged the following day with instructions for exercise restriction and rechecks at 2 and 6 weeks (6 weeks for radiographs). At the 2 week recheck, Stitch was ambulating without lameness and had
very good range of motion in the left elbow. At 4 weeks after surgery, Stitch represented for acute right thoracic limb lameness. A contralateral (right) lateral humeral condylar fracture was diagnosed with radiographs and repaired in a similar fashion to the left.

At this time, Stitch is fully healed from both surgeries and doing well. He did develop a seroma on the right elbow that was treated with explantation. Humeral condylar fractures are typically seen in lateral (most common, see below), medial, and bicondylar configurations. Most of these fractures are appropriately categorized as Salter-Harris IV as they propagate from the articular surface, through the
physis and into the metaphysis. There can be variable amounts of comminution present.
In our experience, humeral condylar fractures can be seen in any breed, but brachycephalic breeds and pit bull terriers seem to be over-represented. The radial head articulates chiefly with the capitulum (lateral aspect of the humeral condyle), so a jarring “jump-down” type of trauma drives the radius against the capitulum. The radial head is thought to produce a wedge effect on the intercondylar region, and the thinner lateral (compared to medial) epicondylar crest fails to produce a lateral condylar
fracture. Spaniels are heavily over-represented for a condition called incomplete ossification of the humeral condyle, which can result in chronic elbow pain or can progress to fracture. In these cases advanced imaging (CT) of the elbows and interrogation of the contralateral elbow in unilaterally-affected cases is important.

There is some clinical overlap, as spaniels can suffer true traumatic fracture and any adult dog with non-traumatic elbow-localized lameness may have IOHC. Stitch experienced minor trauma with both episodes of fracture, but his age and conformation may have contributed.
Open reduction and internal fixation has historically been recommended to perfectly restore the articular surface and provide rigid stabilization. This allows predictable and direct (without a callus) healing, avoiding osteoarthritis and impaired range of motion.
Minimally-invasive fixation is well-suited to many humeral condylar fractures because it allows excellent visualization of fracture fragments in multiple planes. This promotes accurate fracture reduction and implant placement. The other big advantage of this approach for this particular injury is that the traditional open surgical approach requires significant dissection. The closed method minimizes surgical time and trauma, allowing fast return to function.


Download the PDF for this case study here: Thoracic_Lameness_in_French_Bulldog.